
Dimensionality-reduced Secure Outlier Detection on 

Union of Subspaces 
 

Kunzan Liu, Yuchen Jiao 
Department of Electronic Engineering 

Tsinghua University 

Beijing, China 

{lkz18,jiaoyc18}@mails.tsinghua.edu.cn 

 

 

Ye Jin, Xu Xiang 
National Key Laboratory on Blind 

 Signal Processing 
Chengdu, China 

beidou_jy@Hotmail.com 

xiangxu1402@163.com 

 

Yuantao Gu 
Department of Electronic Engineering 

Tsinghua University 
Beijing, China 

gyt@tsinghua.edu.cn 

 
Abstract—In the problem of outlier detection (OD) on a union 

of subspaces (UoS), inliers are assumed to lie around a union of 

low-dimensional subspaces, and the goal is to detect the outliers 

that are not close to any of these subspaces. Among various 

algorithms, sparse self-representation-based ones have attracted 

much attention because of their theoretical performance 

guarantee. However, these algorithms need direct access to all raw 

data, and thus have poor data security and privacy protection 

capability. To solve this problem, in this paper we propose a new 

algorithm called dimensionality-reduced secure outlier detection 

(DrSOD), which uses random projection as a preprocessing step 

to avoid direct access to the raw data. We theoretically prove that 

DrSOD can correctly detect outliers with overwhelming 

probability under connectivity assumptions. In addition, the 

random projection step improves the computational efficiency of 

the algorithm. Experiments on synthetic and real-world datasets 

also demonstrate the effectiveness and efficiency of DrSOD. 

Keywords-random projection; data security and privacy; outlier 

detection; self-representation; union of subspaces 

I. INTRODUCTION 

In many computer vision applications such as motion 
segmentation [1] and face recognition [2], high-dimensional 
datasets are frequently discovered to have low-dimensional 
structure called Union of Subspaces (UoS) [3], where data 
points are assumed to lie around a union of low-dimensional 
subspaces. Learning systems based on UoS model has received 
much attention, such as subspace clustering and subspace 
learning [4]. However, real-world datasets often involve outliers, 
which neither belong to any subspace nor exhibit low-
dimensional structure. Generally, detecting and removing these 
outliers before further processing can greatly improve the 
efficiency and precision of the system. Therefore, outlier 
detection (OD) on UoS model is a significant issue in practical 
applications.  

A maturing increasingly crucial problem in the 
implementation of outlier detection is the data security and 
privacy [5]. However, in many existing detection algorithms, 
analysts need the access to all raw data, which is harmful to data 
security [6], [7], [8], [9]. For example, in face recognition tasks, 
the raw data, i.e., face images, are visible, which may reveal 

personal privacy. Therefore, detecting outliers without direct 
access to the raw data is necessary for privacy protection. 

There are several classes of OD methods. RANSAC [6] is 
based on fitting a subspace for points randomly selected, and 
indicating outliers and inliers according to the estimated 

subspaces. However, the objective problem is usually 
nonconvex, and its performance heavily relies on good 
initializations. Another class of algorithms uses the fact that 
outliers have lower similarities with other data points compared 
with inliers [7]. While these algorithms require the inliers to be 
well distributed and densely sampled within all subspaces, 
which is hard to be satisfied in practice. Other methods solve 
convex optimization problems with robustness to outliers [8], 
[9]. However, when dealing with multiple inlier subspaces, these 
methods treat the union as a single linear subspace, and have 
large complexity because of the high dimension. Moreover, 
none of the above methods take data security and privacy into 
account because they directly process the raw data.  
 

Recently, You et al [10] have enabled OD under a more 
general condition by incorporating self-representation, which is 
a widely used technique and has immensely boosted the 
performance of many data processing tasks. Empirical study 
shows that this algorithm achieves the state-of-the-art 
performance. Moreover, it is theoretically proved that this 
algorithm, under mild assumptions, can correctly detect all 
outliers as long as the so-called Subspace Preserving (SP) 
property is satisfied. However, this algorithm still does not 
consider data security and privacy. Moreover, the computational 
cost can be extremely large when the dimension of the data 
points is high [4].  

Motivated by privacy protection and computational 
efficiency of OD, in this paper we propose a new algorithm 
named Dimensionality-reduced Secure Outlier Detection 
(DrSOD). It adopts random projection as a preprocessing step. 
Since that random projection greatly changes the data 
representation, it is hard to get private information from the 
preprocessed data. Fig. 1 illustrates this by comparing the raw 
data (Fig. 1(a)), which is a human face image, and the 
preprocessed data (Fig. 1(b)). It is obvious that from Fig. 1(b) 
one cannot recognize the person. Besides privacy protection, 
random projection also reduces the dimension of the data, and 
thus improves the computational efficiency of the algorithm.  
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              (a) original image     (b) preprocessed image 

Fig. 1. An example to show the security and privacy consideration of DrSOD. 
(a) is the original image and (b) is the same image after preprocessing. 
 

After using random projection, an important question that 
needs to be answered is that whether the detection performance 
will be degraded. To this end, we theoretically analyze the 
correctness of DrSOD. Theoretical results show that when the 
random matrices satisfy the so-called Johnson-Lindenstrauss 
(JL) Property, random projection will not greatly harm the 
performance. JL Property is a very mild condition and is 
satisfied by numerous types of random matrices. They can 
preserve the inner product between two data points and the 
distance between two subspaces after mapping [11]. We also 
conduct experiments using synthetic and real-world datasets. 
Satisfactory results illustrate the practicability and efficiency of 
our algorithm. 

The theoretical correctness confirmation is the main 
contribution of this paper. There are some similar theoretical 
works like [12] which has studied the perturbation of random 
projection on various subspace clustering algorithms based on 
the Subspace Restricted Isometry Property [13]. However, 
random projection has never been applied in self-representation-
based OD algorithms before to our best knowledge. Moreover, 
analysis in this paper shows that the SP property holds with high 
probability after random projection. Because SP property is the 
premise of numerous subspace learning problems, our results 
indicate that random projection can contribute to more 
applications. 

II. PRELIMINARIES 

A. Random projection 

Random projection, also known as random compression, 

projects the raw data 𝒙 ∈ ℝ𝑁 onto a medium-dimensional space 
ℝ𝑛  by a random matrix 𝚽 ∈ ℝ𝑛×𝑁 . The class of random  
matrices we discussed in this paper, defined below, are the ones 
with so-called JL Property. 

Definition 1 [14] A random matrix 𝚽 ∈ ℝ𝑛×𝑁 is said to satisfy 
JL Property if for any 0 < 𝜀 < 1/2, there exists some universal 
constant 𝑐 > 0, such that for any 𝒙 ∈ ℝ𝑁, 

 
|‖𝚽𝒙‖2

2 − ‖𝒙‖2
2| < 𝜀‖𝒙‖2

2 (1) 

holds with probability at least 1 − exp(−𝑐𝜀2𝑛). 
Random matrices with JL Property include Gaussian 

matrices, Bernoulli matrices, partial Fourier matrices and partial 
Hadamard matrices, which are easy to generate and efficient to 
compute. These random matrices have been revealed to be able 
to preserve plenty of connections between subspaces with 
overwhelming probability, such as the distance between 
subspaces and the canonical angles [13], [15], [16]. These 
properties suggest that we make almost no perturbation on the 
data structure after applying random matrices with JL Property. 

JL Property also implies other natures of random matrices. 
The next lemma shows that the spectral norm of 𝚽⊤𝚽 is around 
one with high probability, which will be used in the proof of our 
main result. 

Lemma 1 ([17], Theorem 5.39) Suppose 𝚽 ∈ ℝ𝑛×𝑁  is a 
random matrix which satisfies JL Property. Then for any 0 <
𝜀 < 1/2, there exist universal constants 𝑐1, 𝑐2 > 0, such that for 
any 𝑛 > 𝑐1𝜀−2, 

 
|‖𝚽⊤𝚽‖2→2 − 1| < 𝜀 (2) 

holds with probability at least 1 − exp(−𝑐2𝜀2𝑛), where ‖⋅‖2→2 
denotes the spectral norm. 

B. Self-representation-based OD 

Let 𝑿 = [𝒙1, … , 𝒙𝑀] ∈ ℝ𝑁×𝑀  denote the matrix whose 
columns are 𝑀 data points with unit euclidian norm. Some of 
the data points are inliers lying on a union of 𝑚  subspaces 
𝒮1, … , 𝒮𝑚, while the others are outliers which do not lie around 
any subspace. 

Self-representation-based OD algorithm consists of two 
steps [10]. In the first step, a representation matrix, denoted as 
𝑹 = [𝒓1, … , 𝒓𝑀], is established by solving 

  𝒓𝑗 = argmin𝒄 𝐹(𝒄; 𝒙𝑗 , 𝑿) 

       ≔ 𝜆‖𝒄‖1 +
1−𝜆

2
‖𝒄‖2

2 +
𝛾

2
‖𝒙𝑗 − 𝑿𝒄‖

2

2
, s. t. 𝑟𝑗𝑗 = 0,      (3) 

where 𝐹(⋅;⋅,⋅) is defined for simplicity and 𝜆 ∈ [0,1), 𝛾 > 0 are 
parameters. From the representation matrix 𝑹 , a directed 
representation graph can be constructed. This graph has 𝑀 
nodes 𝑉1, … , 𝑉𝑀 , respectively representing 𝑀  data points 
𝒙1, … , 𝒙𝑀, and the weight of the edge from 𝑉𝑖 to 𝑉𝑗 is defined as 

𝑒𝑖𝑗 = |𝑟𝑖𝑗|. The expected case is that all nodes corresponding to 

inliers have edges that only lead to inliers, while edges from 
outlier nodes can lead to both inliers and outliers. In this case, 
the corresponding representation matrix is said to satisfy the SP 
property, whose mathematical definition is below. 

Definition 2 [10] Denote ℓ𝑗 as the index of the subspace data 𝒙𝑗 

lies in, i.e., 𝒙𝑗 ∈ 𝒮ℓ𝑗
, and 𝑿

𝑗

ℓ𝑗
 as the submatrix of 𝑿  whose 

columns are all data in 𝒮ℓ𝑗
 except 𝒙𝑗 . Define 𝒓

𝑗

ℓ𝑗 =

argmin𝒄 𝐹 (𝒄; 𝒙𝑗 , 𝑿
𝑗

ℓ𝑗
) and 𝜹𝑗 ≔ 𝛾 (𝒙𝑗 − 𝑿

𝑗

ℓ𝑗𝒓
𝑗

ℓ𝑗
). If 

 max
𝑗

max
𝑘≠𝑗,𝒙𝑘∈𝒮ℓ𝑗

|⟨𝒙𝑘 , 𝜹𝑗⟩| < 𝜆, (4) 

is satisfied, where 𝜆  is the parameter in 𝐹(⋅;⋅,⋅) , then the 
representation matrix 𝑹 of 𝑿 is said to satisfy SP property. 

In the second step, random walks are initialized on the 
representation graph from each node. When the SP property 
holds, all random walks eventually end up at inlier nodes, which 
is our criteria to separate inliers and outliers [10]. 

The correctness of self-representation-based OD is 
theoretically analyzed (shown in Lemma 1) under Assumption 
1. 

Assumption 1 [10] In the representation graph, for any inlier 
subspace there is a path in each direction between each pair of 
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vertices in the connected component, while for each subset of 
outliers there exists an edge that goes from one point in this 
subset to an inlier or to another outlier outside this subset. 

Lemma 2 ([18], Lemma A.1) If the representation matrix 𝑹 
satisfies Assumption 1, and the dataset 𝑿  satisfy (4) (i.e. 𝑹 
satisfies SP property), then self-representation-based OD 
correctly identifies all outliers. 

III. DIMENSIONALITY-REDUCED SECURE OUTLIER 

DETECTION 

To tackle the problem of OD’s poor security and high 
computational cost, we propose a new algorithm called DrSOD 
in Algorithm 1.  

Algorithm 1 Dimensionality-reduced Secure Outlier 

Detection (DrSOD) 

Input: Dataset 𝑿 ∈ ℝ𝑁×𝑀 , compressed dimension 𝑛 , 

number of iterations 𝑇, threshold 𝜁, parameters 𝜆 and 𝛾 

in the elastic net problem. 

Step Ⅰ: Dimensionality reduction. 

   1. Generate a random matrix 𝚽 ∈ ℝ𝑛×𝑁. 

   2. Compute dimensionality-reduced dataset �̃� = 𝚽𝑿. 

Step Ⅱ: Self-representation. 

   3. Compute representation matrix �̃� of �̃� using (5). 

Step Ⅲ: Random walks. 

   4. Compute transition matrix 𝑷  from �̃�  using 𝑝𝑖𝑗 =
|𝑟𝑖𝑗|

‖𝒓𝑖‖1
, ∀𝑖, 𝑗 ∈ {1, … , 𝑀}. 

   5. Initialize 𝑡 = 0, 𝝅 = [1/𝑀, … ,1/𝑀], and �̅� = 𝟎. 

   6. for 𝑡 = 1, … , 𝑇 do 

   7.     Compute 𝝅 ← 𝝅 ⋅ 𝑷. 

   8.     Set �̅� ← �̅� + 𝝅. 

   9. end for 

 10. Set �̅� = �̅�/𝑇. 

Output: Indicator of outliers 𝕀(�̅�𝑗 < 𝜁). 
 

The first step of DrSOD is a preprocessing step which 
compresses dataset 𝑿  by a random matrix 𝚽  and yields the 

dimensionality-reduced dataset �̃� = 𝚽𝑿 with every data point 
𝒙𝑗 compressed to �̃�𝑗 = 𝚽𝒙𝑗. In the second and the third step, we 

apply self-representation-based OD algorithm [10] to the 

dimensionality-reduced dataset �̃� . Specifically, we construct 

representation matrix �̃� = [�̃�1, … , �̃�𝑀] by solving 

 �̃�𝑗 = argmin𝒄 𝐹(𝒄; �̃�𝑗 , �̃�), (5) 

where 𝐹(⋅;⋅,⋅) is defined in (3). Then we apply random walks on 

the representation graph �̃� to identify outliers. 

Our main result of analyzing the correctness of DrSOD is 
shown in the following Theorem. 

Theorem 1 For any 0 < 𝜀 < 1/4, if matrix �̃� defined in (5) 
satisfies Assumption 1, and the dataset 𝑿 satisfies 

 max
𝑗

max
𝑘≠𝑗,𝒙𝑘∈𝒮ℓ𝑗

|⟨𝒙𝑘 , 𝜹𝑗⟩| < 𝜆 − 𝜏, (6) 

where 𝜹𝑗 is defined in Definition 2 and 

𝜏 ≔ max
𝑗

{𝜀 (1 + ‖𝜹𝑗‖
2

2
) + √6𝜀(1 + 𝜀)𝛾‖𝜹𝑗‖

2
}, 

then there exist universal constants 𝑐1, 𝑐2 > 0, such that for any 
𝑛 > max(𝑐1𝜀−2, 𝑙𝑛 𝑀), DrSOD correctly identifies all outliers 
with probability at least 1 − exp(−𝑐2𝜀2𝑛). 

The holding probability increases exponentially with the 
compressed dimension 𝑛. This indicates that if 𝑛 is not too small, 
then the probability is close to one.  

Now we are ready to compare the condition (6) in Theorem 
1 with (4) in the result of the self-representation-based OD 
Algorithm. Notice that (6) is only strengthened with an amount 

𝜏 = 𝒪 (𝜀 max
𝑗

‖𝜹𝑗‖
2

) , which is determined by 𝜀  and can be 

sufficiently small. Thus, there is almost no excessive 
requirement on the raw dataset. Another difference in the 
condition of Theorem 1 and Lemma 2 is that the former requires 

�̃�, instead of 𝑹, to satisfy Assumption 1. The reasonability of 
this condition is explained in Remark 1. 

A. Proof of Theorem 1 

Because of the independence of {𝒙𝑗}
𝑗=1

𝑀
, we complete the 

proof by taking fixed 𝑗 and 𝑘 which satisfy 𝒙𝑘 ∈ 𝒮ℓ𝑗
. Despite of 

the notations in Theorem 1 and Lemma 2, we denote 𝑓(𝒄) ≔

𝐹 (𝒄; 𝒙𝑗 , 𝑿
𝑗

ℓ𝑗
)  and 𝑓(𝒄) ≔ 𝐹 (𝒄; �̃�𝑗 , �̃�

𝑗

ℓ𝑗
) , where �̃�

𝑗

ℓ𝑗 = 𝚽𝑿
𝑗

ℓ𝑗
. 

Because 𝑓(𝒄) is strongly convex, it has unique optimal solution 

�̃�
𝑗

ℓ𝑗
 and define �̃�𝑗 ≔ 𝛾(�̃�𝑗 − �̃�

𝑗

ℓ𝑗�̃�
𝑗

ℓ𝑗). 

What we need to prove now is 

|⟨𝒙𝑘, 𝜹𝑗⟩ − ⟨�̃�𝑘, �̃�𝑗⟩| ≤ 𝜀 (1 + ‖𝜹𝑗‖
2

2
) + √6𝜀(1 + 𝜀)𝛾‖𝜹𝑗‖

2
, 

holds with probability at least 1 − exp(−𝐶𝜀2𝑛), where 𝐶 is a 
universal constant. If this inequality holds, using union bound 
and 𝑛 > ln 𝑀, we can obtain that DrSOD satisfies SP property 
with probability at least 1 − 𝑀 exp(−𝐶𝜀2𝑛) > 1 −
exp(−𝑐𝜀2𝑛) and complete the proof.  

We can first estimate |⟨𝒙𝑘, 𝜹𝑗⟩ − ⟨𝚽𝒙𝑘, 𝚽𝜹𝑗⟩|  by using a 

consequence drawn directly from the definition of JL Property. 

Lemma 3 Suppose 𝒙, 𝒚 ∈ ℝ𝑁 , and 𝚽 ∈ ℝ𝑛×𝑁  is a random 
matrix which satisfies JL Property. Denote �̃� ≔ 𝚽𝒙 and �̃� ≔
𝚽𝒚 as the projected vectors. Then for any 0 < 𝜀 < 1/2, there 
exists some universal constant 𝑐′ > 0, such that 

 
|⟨�̃�, �̃�⟩ − ⟨𝒙, 𝒚⟩| < 𝜀(‖𝒙‖2

2 + ‖𝒚‖2
2), 

(7) 

holds with probability at least 1 − exp(−𝑐′𝜀2𝑛). 

PROOF OF LEMMA 3 Note that ‖𝒂 + 𝒃‖2
2 − ‖𝒂 − 𝒃‖2

2 = 4⟨𝒂, 𝒃⟩, 
we obtain 

|⟨�̃�, �̃�⟩ − ⟨𝒙, 𝒚⟩| 

≤
1

4
|‖�̃� + �̃�‖2

2 − ‖𝒙 + 𝒚‖2
2| +

1

4
|‖�̃� − �̃�‖2

2 − ‖𝒙 − 𝒚‖2
2| 

<
1

4
𝜀‖𝒙 + 𝒚‖2

2 +
1

4
𝜀‖𝒙 − 𝒚‖2

2 

=
1

2
𝜀(‖𝒙‖2

2 + ‖𝒚‖2
2) 

holds with probability at least 1 − 2 exp(−𝑐𝜀2𝑛).               ■ 
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Using Lemma 3, we obtain 

|⟨𝒙𝑘 , 𝜹𝑗⟩ − ⟨�̃�𝑘, 𝚽𝜹𝑗⟩| < 𝜀 (1 + ‖𝜹𝑗‖
2

2
) 

holds with probability at least 1 − 2 exp(−𝑐′𝜀2𝑛), where 𝑐′ is 
a universal constant. Now we just need to prove 

|⟨�̃�𝑘, 𝚽𝜹𝑗⟩ − ⟨�̃�𝑘, �̃�𝑗⟩| < √6𝜀(1 + 𝜀)𝛾‖𝜹𝑗‖
2
 

holds with probability at least 1 − 2 exp(−𝑐′′𝜀2𝑛). 

We compute the difference between 𝑓 (𝒓
𝑗

ℓ𝑗
)  and 𝑓 (�̃�

𝑗

ℓ𝑗
) 

using Definition 1. Note that 𝒄 = 𝒓
𝑗

ℓ𝑗
 and 𝒄 = �̃�

𝑗

ℓ𝑗
 are the 

optimal points of 𝑓(𝒄)  and 𝑓(𝒄) , respectively, we obtain 

𝑓 (�̃�
𝑗

ℓ𝑗
) ≥ 𝑓 (𝒓

𝑗

ℓ𝑗
) and 𝑓 (𝒓

𝑗

ℓ𝑗
) ≥ 𝑓 (�̃�

𝑗

ℓ𝑗
). Then, we have 

         𝑓 (�̃�
𝑗

ℓ𝑗
) − 𝑓 (𝒓

𝑗

ℓ𝑗
) 

 ≤ |𝑓 (�̃�
𝑗

ℓ𝑗) − 𝑓 (�̃�
𝑗

ℓ𝑗)| + |𝑓 (𝒓
𝑗

ℓ𝑗) − 𝑓 (𝒓
𝑗

ℓ𝑗)| (8) 

           <
𝜀𝛾

2
‖𝒙𝑗 − 𝑿

𝑗

ℓ𝑗�̃�
𝑗

ℓ𝑗‖
2

2

+
𝜀𝛾

2
‖𝒙𝑗 − 𝑿

𝑗

ℓ𝑗𝒓
𝑗

ℓ𝑗‖
2

2

 

holds with probability at least 1 − 2 exp(−𝑐𝜀2𝑛). 

Denote ∇‖𝒄‖1 = sign(𝒄), where the function sign is defined 

componentwise by (sign(𝒄))
𝑖

= sign(𝑐𝑖) for nonzero 𝑐𝑖 while 

sign(0) ∈ [−1,1], following the definition in [19]. 

We have 

‖�̃�
𝑗

ℓ𝑗‖
1

− ‖𝒓
𝑗

ℓ𝑗‖
1

= ∇ ‖𝒓
𝑗

ℓ𝑗‖
1

⊤

(�̃�
𝑗

ℓ𝑗 − 𝒓
𝑗

ℓ𝑗
) 

                             + ∑ [sign (�̃�
𝑗𝑖

ℓ𝑗
) �̃�

𝑗𝑖

ℓ𝑗 − sign (𝑟
𝑗𝑖

ℓ𝑗
) �̃�

𝑗𝑖

ℓ𝑗]

dim 𝒮ℓ𝑗
−1

𝑖=1

, 

and using sign(�̃�𝑗𝑖)�̃�𝑗𝑖 ≥ sign(𝑟𝑗𝑖)�̃�𝑗𝑖, we obtain 

 
‖�̃�

𝑗

ℓ𝑗‖
1

− ‖𝒓
𝑗

ℓ𝑗‖
1

≥ ∇ ‖𝒓
𝑗

ℓ𝑗‖
1

⊤

(�̃�
𝑗

ℓ𝑗 − 𝒓
𝑗

ℓ𝑗). (9) 

Using the convexity of 𝑓(𝒄) and ∇𝑓 (𝒓
𝑗

ℓ𝑗
) = 𝟎, we have 

        𝑓 (�̃�
𝑗

ℓ𝑗
) − 𝑓 (𝒓

𝑗

ℓ𝑗
) 

           ≥ ∇𝑓 (𝒓
𝑗

ℓ𝑗
)

⊤
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Moreover, using ‖𝒂 − 𝒃‖2
2 ≤ 2(‖𝒂‖2

2 + ‖𝒃‖2
2)  to handle 
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𝑗
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𝑗

ℓ𝑗‖
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2

 in (8), we obtain 
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, 

or equivalently we have 
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holds with probability at least 1 − 2 exp(−𝑐𝜀2𝑛). 
Furthermore, using Lemma 1, we have 

|⟨�̃�𝑘, 𝚽𝜹𝑗⟩ − ⟨�̃�𝑘, �̃�𝑗⟩| = 𝛾 |⟨�̃�𝑘, �̃�
𝑗

ℓ𝑗
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𝑗

ℓ𝑗 − 𝒓
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                                         = 𝛾 |⟨�̃�𝑘, �̃�
𝑗
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                                         ≤ 𝛾(1 + 𝜀)√
3𝜀

1 − 2𝜀
‖𝜹𝑗‖

2
 

holds with probability at least 1 − exp(−𝑐′′𝜀2𝑛), where 𝑐′′ is a 
universal constant. 

Note that 1 − 2𝜀 > 1/2, we complete the proof.         ■ 

Remark 1 The assumption of the representation graph needed 
in Theorem 1 is the same as in Lemma 2. This is because 𝒓𝑗 and 

�̃�𝑗 are very similar. Specifically, we can obtain that 

‖�̃�𝑗 − 𝒓𝑗‖
2

2
<

𝜀𝛾
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2

2
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2

2
) 

also holds with probability at least 1 − 2 exp(−𝑐𝜀2𝑛), and the 

derivation is similar to ‖𝑿
𝑗

ℓ𝑗
(�̃�

𝑗

ℓ𝑗 − 𝒓
𝑗

ℓ𝑗
)‖

2

2

. 

B. Complexity Analysis 

The step accounts for the large computation complexity is 
the optimization in (5), and there are many ways to solve it. We 
take a typical method RSSN [19] as an example. For an 𝑁 × 𝑀-
dimensional dataset, it takes 𝒪(𝑁2𝑀3) time for one iteration, so 
when the dimension of the dataset is reduced to 𝑛 × 𝑀 , the 
running time in self-representation reduces significantly, while 
the additional cost is minor as the time complexity of 
dimensionality reduction is just 𝒪(𝑁 log 𝑁 𝑀2). 

IV. EXPERIMENTAL RESULTS 

In this section, we further verify the effectiveness and 
efficiency of DrSOD by conducting experiments on a synthetic 
dataset and a real-world dataset. The efficiency is shown directly 
by the significant reduction in running time. The metric we 
provide for describing the practicability is the F1-score [10], 
which is the harmonic mean of precision and recall. We report 
the largest F1-score across all thresholds, so when an F1-score 
is 1, there exists a threshold that separates inliers and outliers 
perfectly. On the real-world dataset, we also use visible images 
to show the security and privacy consideration of DrSOD. The 

parameters in (5) are set to 𝜆 = 0.95 and 𝛾 = 𝛼𝜆/ max
𝑖:𝑖≠𝑗

|𝒙𝑗
⊤𝒙𝑖|, 

where 𝛼 is respectively 100 and 10 in the following experiments. 
The number of iterations in Algorithm 1 is 𝑇 = 10. 

We choose three methods to solve the convex optimization 
problem (5): Regularized SemiSmooth Newton method (RSSN) 
[19], ORacle Guided Elastic Net method (ORGEN) [18], and 
Proximal Gradient Decent method (PGD) [20]. The 
practicability and efficiency vary according to the parameters 
and the complexity of the chosen method. For instance, PGD is 
proved to reach the optimal solution but has a larger 
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computational complexity compared to RSSN and ORGEN. 
However, they have all shown the same tendency which 
coincide with the conclusion in our theoretical analysis, i.e., the 
F1-score preserves when the compression ratio is not too small, 
and the running time declines significantly as the compression 
ratio becomes lower. 

A. DrSOD on Synthetic Dataset 

The synthetic dataset is constructed in the ambient space of 
dimension 500. We randomly choose two subspaces of 
dimension 10 and generate 50 points in two subspaces as inliers 
respectively, and the outliers are 50 arbitrary points in the 
ambient space. Fig. 2(a) and (b) show the F1-score and the 
running time under different compression ratios respectively. It 
can be seen that when using ORGEN to solve the optimization 
problem (5), the detection still succeeds when the compression 
ratio decreases from 1 to 0.03, while the running time drops from 
10.43 to 0.80. Apparently, the correctness completely preserves 
and considerable time is saved after compression in this model. 

 

       
(a) F1-score                                     (b) running time 

Fig. 2. Performance of DrSOD on synthetic dataset. (a) and (b) show that OD 
still succeeds when the compression ratio is 0.03, while the running time drops 
to about 8% of the original algorithm. 
 

      
(a) F1-score                                     (b) running time 

Fig. 3. Performance of DrSOD on real-world dataset. (a) and (b) show that the 
F1-score is almost unchanged when the compression ratio is greater than 0.025, 
while the running time declines significantly. 
 
 

B. DrSOD on Real-world Dataset 

For real-world dataset, we use standard dataset Extended 
Yale Face B [21], consisting of images of 38 individuals under 
64 different lighting conditions, and the resolution of each image 
is 192×168. We conduct an experiment aiming at identify the 
images of people who appear less among a batch of images. We 
select all 64 images of the first 3 individuals in Extended Yale 
Face B as inliers and 2 images of the other individuals chosen 
randomly as outliers, i.e., 262 data points are used, with 70 
outliers expected to be detected. In Fig. 3(a) and (b), take 
ORGEN as an example, on one hand, the F1-score using the 
original 32256-dimensional images is 0.9710, and even when 
the images are compressed to 800-dimensional, the F1-score is 

still 0.9702, which is an ignorable decrease. On the other hand, 
the saving in running time is significant, which goes from 31.02 
to 1.23, so the compression ratio over 0.025 is demonstrated to 
achieve satisfactory results.  

We use Fig. 1 to illustrate the security and privacy 
consideration of DrSOD. A random sample of the raw data is 
shown in Fig. 1(a). Previous methods need direct access to these 
visible images, which is harmful to data security and privacy. 
However, in DrSOD, people who process the same image shown 
in Fig. 1(a) just need the preprocessed information shown in Fig. 
1(b) (take compression ratio 0.0625 as an example), which is 
safer than previous methods. 

V. CONCLUSION 

In this paper, we propose DrSOD algorithm which could 
protect the data privacy and has high computational efficiency. 
Moreover, we theoretically confirm the correctness of DrSOD. 
The experiments on synthetic and real-world datasets justify the 
superior performance of detection and the significant reduction 
on computational cost. 
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